## **Advanced Pre Calculus**

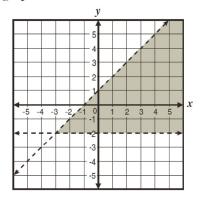
## Review Practice #6

What is the complete solution to the equation |3-6x|=15?

**A** 
$$x = 2; x = 3$$

**B** 
$$x = -2; x = 3$$

C 
$$x = 2; x = -3$$


**D** 
$$x = -2; x = -3$$

What is the solution to the system of equations shown below?

$$\begin{cases} 2x - y + 3z = 8 \\ x - 6y - z = 0 \\ -6x + 3y - 9z = 24 \end{cases}$$

3 For a wedding, Shereda bought several dozen roses and several dozen carnations. The roses cost \$15 per dozen, and the carnations cost \$8 per dozen. Shereda bought a total of 17 dozen flowers and paid a total of \$192. How many roses did she buy?

What system of inequalities *best* represents the graph shown below?



**A** 
$$y > -2$$
 and  $y > x + 1$ 

**B** 
$$y > -2$$
 and  $y < x + 1$ 

C 
$$y < -2$$
 and  $y > x + 1$ 

**D** 
$$y < -2$$
 and  $y < x + 1$ 

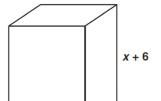
Which polynomial represents  $(3x^2 + x - 4)(2x - 5)$ ?

A 
$$6x^3 - 13x^2 - 13x - 20$$

**B** 
$$6x^3 - 13x^2 - 13x + 20$$

C 
$$6x^3 + 13x^2 + 3x - 20$$

**D** 
$$6x^3 + 13x^2 + 3x + 20$$


 $\boxed{11} \left( -2x^2 + 6x + 1 \right) - 2\left( 4x^2 - 3x + 1 \right) =$ 

**A** 
$$6x^2 - 1$$

**B** 
$$-10x^2 - 1$$

C 
$$6x^2 + 12x - 1$$

**D** 
$$-10x^2 + 12x - 1$$



$$\frac{x+3}{x+5} + \frac{6}{x^2 + 3x - 10} =$$

$$\mathbf{A} = \frac{3a^5}{b^3c^5}$$

$$\mathbf{A} \qquad \frac{3-i}{4}$$

$$\mathbf{B} = \frac{3ab}{c^5}$$

$$\mathbf{B} = \frac{3-i}{5}$$

$$C = \frac{3}{b^2c^5}$$

$$\mathbf{C} \quad \frac{4-i}{4}$$

$$\mathbf{D} \quad \frac{3}{ab^3c^5}$$

$$\mathbf{D} \quad \frac{4-i}{5}$$